On the matrix ring over a finite field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

Authenticated Key Agreement Protocol Based on a Matrix Group and Polynomial Ring over a Finite Field

Alongside encryption and signatures, key agreement is one of the fundamental issues in modern cryptography and its security is the main concern in cloud computing and World Wide Web-based applications. In this paper, a novel type of more secure 3-pass key agreement protocol is proposed based on a recently proposed matrix-based key agreement protocol of Roma ń czuk and Ustimenko. By the hash-and...

متن کامل

On the diameter of the commuting graph of the full matrix ring over the real numbers

‎In a recent paper C‎. ‎Miguel proved that the diameter of the commuting graph of the matrix ring $mathrm{M}_n(mathbb{R})$ is equal to $4$ if either $n=3$ or $ngeq5$‎. ‎But the case $n=4$ remained open‎, ‎since the diameter could be $4$ or $5$‎. ‎In this work we close the problem showing that also in this case the diameter is $4$.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1985

ISSN: 0024-3795

DOI: 10.1016/0024-3795(85)90132-6