On the matrix ring over a finite field
نویسندگان
چکیده
منابع مشابه
On Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملAuthenticated Key Agreement Protocol Based on a Matrix Group and Polynomial Ring over a Finite Field
Alongside encryption and signatures, key agreement is one of the fundamental issues in modern cryptography and its security is the main concern in cloud computing and World Wide Web-based applications. In this paper, a novel type of more secure 3-pass key agreement protocol is proposed based on a recently proposed matrix-based key agreement protocol of Roma ń czuk and Ustimenko. By the hash-and...
متن کاملOn the diameter of the commuting graph of the full matrix ring over the real numbers
In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring $mathrm{M}_n(mathbb{R})$ is equal to $4$ if either $n=3$ or $ngeq5$. But the case $n=4$ remained open, since the diameter could be $4$ or $5$. In this work we close the problem showing that also in this case the diameter is $4$.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1985
ISSN: 0024-3795
DOI: 10.1016/0024-3795(85)90132-6